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Summary. Due to the increasing sophistication and miniaturization of computational com-
ponents, complex, distributed systems of interacting agents are becoming ubiquitous. Such
systems, where each agent aims to optimize its own performance, but where there is a well-
defined set of system-level performance criteria, are called collectives. The fundamental prob-
lem in analyzing/designing such systems is in determining how the combined actions of a large
number of agents leads to “coordinated” behavior on the global scale. Examples of artificial
systems which exhibit such behavior include packet routing across a data network, control
of an array of communication satellites, coordination of multiple rovers, and dynamic job
scheduling across a distributed computer grid. Examples of natural systems include ecosys-
tems, economies, and the organelles within a living cell.

No current scientific discipline provides a thorough understanding of the relation between
the structure of collectives and how well they meet their overall performance criteria. Although
still very young, research on collectives has resulted in successes both in understanding and
designing such systems. It is expected that as it matures and draws upon other disciplines
related to collectives, this field will greatly expand the range of computationally addressable
tasks. Moreover, in addition to drawing on them, such a fully developed field of collective
intelligence may provide insight into already established scientific fields, such as mechanism
design, economics, game theory, and population biology. This chapter provides a survey to the
emerging science of collectives.

1 Just What is a “Collective”?

As computing power increases, becomes cheaper and is packed into smaller and
smaller units, a new computational paradigm, one based on adaptive distributed com-
puting is emerging. Whether used for control or optimization of complex engineered
systems, or the analysis of natural systems, this new paradigm offers new and ex-
citing solutions to the problems of the twenty first century. However, before the full
strength of this powerful computational paradigm can be harnessed, some fundamen-
tal issues need to be addressed.
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In this chapter we provide a survey of approaches to large distributed systems
called collectives. A collective is a large system of agents3, where each agent has a
private utility function it is trying to maximize using adaptive utility-maximizing
algorithms, called ”agents”, along a world utility function that measures the full
system’s performance4.

Many fields provide partial solutions to the design and study of collectives. In
particular, game theory [11, 19, 30, 87], mechanism design [82, 87], and multi-
agent reinforcement learning [53, 56, 112, 192] are fields that grapple with some
of the issues encountered in the field of collectives. details). However, though these
fields provide some of the ingredients required for a full fledged field of collectives,
they fall short of providing a suitable starting point for the development of such a
field. Furthermore, merging concepts from one of these fields to another is in general
cumbersome due to the various assumptions – rarely explicit – deeply rooted in each
field. What is needed for the field of collectives to develop and mature is a common
language describing the various properties of collectives, a set of desirable properties,
a theoretical framework, and a set of problems that will provide good testing grounds
for new ideas in this field.

1.1 Distinguishing Characteristics of Collectives

Collectives can be characterized through many different distinguishing character-
istics. Since the chapters in this volume will focus on various design and anal-
ysis aspects of collectives, we briefly synopsize some distinguishing characteris-
tics of collectives. These include the presence/absence of a well-defined world
utility function; the forward/inverse approach; the presence/absence of centralized
control and/or communications; the presence/absence of a model; and scalabil-
ity/robustness/adaptivity.

World Utility Function

Having a well-defined world utility function that concerns the behavior of the entire
distributed system is crucial in the study of collectives. Such a world utility func-
tion provides an objective quantification of how well the system is performing. In
that light, in a collective, we are not concerned with an unquantifiable “emergent”
behavior of the system. Rather we are interested in how the system maximizes the
specified world utility function (of course, nothing precludes the world utility from
depending on the emergent behavior of the system, assuming such behavior can be
quantified).

The most natural type of world utility is a provided utility, one that comes as
part of the problem definition and specifies the overall performance criteria that the

3 we use the term “agent” to refer to the components of the system, though the various fields
surveyed use different terminology (i.e., player in game theory)

4 The world utility can be provided as part of the specifications of the system, or “con-
structed” by the designer, as discussed below.
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collectives needs to meet. Examples of such world utilities include total throughput
in a data network, total scientific information gathered by a team of deployables, total
information downloaded by a constellation of satellites, the valuation of a company,
or the percentage of available free energy exploited by an ecosystem.

However, the lack of a provided world utility does not preclude a collective-
based approach to a problem. In such a case, assuming the agents have some utility
functions associated with them, a world utility can be constructed (e.g., construct a
social welfare function in economics). Examples of such world utilities include sum
of agent utilities, sum of agent utilities and variances, and the utility of the worst-off
agent. Note that maximizing each of these constructed world utilities would result
in different system behavior. What is particularly interesting in such problems is the
relationship between the agents’ initial utility functions and the utility functions that
they ought to pursue in order to maximize the constructed world utility function.

Forward (Analysis) vs. Inverse (Design) Problem

Whether it has a provided or constructed world utility, a collective can be approached
from two very different perspectives. Analysis or the forward problem, and design
or the inverse problem.

The forward problem focuses on how the localized attributes of a collective
induce global behavior and thereby determine system performance. Generally, this
problem arises in the study of already existing complex systems, and is most natu-
rally applicable to biological systems, or systems that can be viewed as such. Ex-
amples of such systems include ecosystems, or a living cell, where in each case, the
local interactions (species and organelles, respectively) lead to complex emergent
behavior at a large scale.

Engineered systems such as processes (e.g., the space shuttle maintenance and
refurbishment process) or (economic) organizations can also be viewed as forward
problems in collectives. In those cases, the analysis approach can lead to predictive
models and detect interactions among components of the system that may lead to
breakdowns (e.g., determining whether a component considered “safe” can cause a
critical malfunction when it is put in interaction with another “safe” component).

The inverse problem on the other hand, arises when we wish to design a system
to induce behavior which maximizes the world utility. Here, the designer either has
the freedom to assign the private utility functions of the agents (e.g., determine what
each satellite or router should be doing) or needs to design incentives that will be
added to the pre-existing private utilities of the agents (e.g., economics, where agents
are humans). In either case though, the focus is on guiding towards states where the
world utility is high.

Centralized communication or control

Though not in the formal definition of a collective, many collectives are decentral-
ized systems. With few exceptions, it will be difficult, if not impossible, to have
centralized control in a collective, not only because reaching each agent may be
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problematic, but more fundamentally, because in many cases a centralized algorithm
may not be able to determine what each agent should do.

Similarly, though some amount of global communication (e.g., broadcasting)
may be possible, in general there will be little to no centralized communication,
where a small subset of agents not only communicates with all the other agents,
but communicates differently with each one of those other agents. Establishing the
amount of allowed (or possible) centralized communication and control will be one
of the fundamental issues in a collective.

Model-Based vs. Model-Free

Another important characteristic of a collective is the presence/absence of a model
describing the dynamics of the system. A model-based approaches consist of:

1. Constructing a detailed model of the dynamics governing the collective;
2. Learning the function which maps the parameters of the model to the result-

ing dynamics of the system (in practice, this step can involve significant hand-
tuning); and

3. a) Drawing conclusions about this system based on the model (forward prob-
lem);
b) Determining parameters of the model that will yield desired behavior (inverse
problem).

A fundamentally different approach however, is to dispense with building a
model altogether, on the grounds that large, complex systems are generally noisy,
faulty, and often operate in non-stationary environments. In such cases, coming up
with a detailed model that captures the dynamics in an accurate manner is often ex-
traordinarily difficult.

A model-free approach hand relies on the agents “reacting” to the environment
(e.g., through a reinforcement learning mechanism). As such they avoid explicitly
modeling the system in which they operate, and in particular, avoid the potentially
infinite regress when one agent tries to model another’s behavior and that other agent
is itself modeling the first agent’s behavior.

The model-based vs. model-free choice has significant consequences in how the
system can adapt, scale up, and how lessons learned from one domain can map to
another one. A model-based approach may be the choice for domains where the
designers can develop detailed models and have a moderate degree of control over
the environment. However, in domains where detailed models are not available, or
where there is reason to believe changes in the environment can lead to significant
deviations from any model, a model-free approach is preferable.

Scalability

One of the implicit defining properties of a collective is that it is a large system of
distributed agents. As such, scalability is a fundamental property of any approach that
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aims to study/design a collective. Though this does not preclude extending extant
analysis/design tools appropriate for single (or small) systems to large systems, it
does suggest that in most instances, new ways of approaching the problem are likely
to be more appropriate (e.g., a game theoretic equilibrium analysis for a million
nano-devices is unlikely to provide useful insight into the behavior of the collective.)

Adaptivity

Though scalability does not require that the system be adaptive, it provides a strong
impetus to move in that direction. Any approach that allows adaptivity, or learning,
will have a significant advantage over one that does not, simply because the larger a
system, the more difficult it will be to know a priori all the “right moves” for each
agent.

Furthermore, the need for adaptivity extends beyond each agent in the collec-
tive. Indeed the structure of the collective itself (e.g., the communication channels
among the agents, the agents’ utility function) in many cases is adaptive. In natu-
ral collectives this system-level adaptivity is generally implicit (e.g., the interaction
among species in an ecosystem or the relationship among employees in a company),
whereas in artificial systems it must be built in.

Robustness

Another desirable property of a collective is that it be robust, i.e., that in order to
reach good values of the world utility, the collective not require that many parame-
ters be set “just right”, that each agent operate failure-free, and that their interaction
be carefully constructed. Clearly as the number of agents in a system increases and
their interaction with one another and the environment becomes more and more com-
plex, it will be increasingly difficult to predict conditions that will lead the system to
maximize the world utility. It is therefore imperative that the collective be insensitive
to the specific values of some parameters or the specific operation of a small subset
of its agents (e.g., in general the poor performance of one employee does not bring a
company down, or the demise of a single individual does not result in the extinction
of a species).

1.2 Canonical Experimental Domains

The previous section provided a list of distinguising characteristics of collectives.
The usefulness of defining these characteristics is in their providing a common lan-
guage for a field of collectives. For example, a particular instance of data routing in a
telecommunications network can be characterized as “a model-free inverse problem
involving a provided world utility function where there is limited broadcast informa-
tion but no form of global control.”

We now provide examples of both engineered and natural systems which are
ideally suited to be studied as collectives. For each, we provide one or more world



6 Kagan Tumer and David Wolpert

utility functions, discuss how it can be approached (e.g., forward/inverse problem),
and what assumptions (e.g., is it model-based?) and restrictions (e.g., is global com-
munication possible?) are present.

• Control system for constellations of communication satellites: A candidate world
utility for this problem is a measure of (potentially importance weighted) infor-
mation transferred. It is an example of an inverse problem, where centralized
communication or control is likely to be difficult or impossible due to physical
constraints (e.g., time lag), and where a model of the data flow is likely to be
inadequate.

• Control system for constellations of planetary exploration vehicles: A potential
world utility for such a problem is a measure of the quality of scientific data col-
lected. Though this can be viewed as an example of an inverse design problem
(as with constellations of satellites), it can also be approached as a forward prob-
lem, particularly if the vehicles have have characteristics which cannot be altered
(e.g., vehicles are built and we are confronted with the problem of predicting the
behavior of the collective).

• Control system for routing over a communication network: An obvious world
utility for this problem is the total throughput of the communication network.
Centralized communication or control in such a network is all but impossible,
but some amount of broadcast information can filter its way to all the agents at
regular time intervals. As an inverse problem, one would be required to design
the private utility functions of the agents. As a forward problem on an already
functioning network, one could determine the stress points of the system, or the
states which would cause the largest congestions in the network.

• Air Space Management: Given a problem specification where there is some lee-
way in modifying the course and speed of airplanes, a potential world utility is the
total delay at airports. The system designers are faced with the inverse problem
of determining the incentives for the agents (whether they be pilots or air traf-
fic controllers) so that their behavior (e.g., arrival times to the airport’s airspace)
optimizes the world utility. This is a case where though global communication is
possible, global control is not.

• Managing a power grid: A world utility based on the efficiency of the grid would
be a good starting point for an inverse problem, involving some degree of central-
ized communication or control. An alternative world utility may be robustness. In
such a case a forward problem would involve finding how quickly the system re-
sponds to certain disturbances, and how the system interactions can be modified
so as to limit the propagation of those disturbances.

• Job scheduling across a computational grid: A candidate world utility is the
efficiency in processing the jobs entering the system. This problem is very similar
to managing a power grid, but provides a glimpse at the inverse problem: how
should one set the rewards of the computational nodes so that they process the
most number of jobs collectively? A model-free solution involving learners at the
computational nodes would be based on limited global communication.
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• Control of the elements of a nanocomputer: A potential world utility for this
problem is how well certain computations are carried out by the nanocomputer5.
In an inverse problem, one would focus on determining the structure of the adap-
tive system which would lead the agents to perform the desired computations. A
particular instance of an inverse problem of this nature is the selection of subsets
of faulty devices, where the world utility is total aggregate error of the selected
devices.

• Study of a protocell: A potential world utility for this problem is the length of
time the protocell6 maintains its functionality. As a forward problem, this prob-
lem consists of modeling the behavior of the system based on the organelles and
their functions/interactions. With more leeway in the definition of the functions
the organelles perform, one can view this as an interesting inverse problem: What
should the organelles try to achieve to maintain the structure and functionality of
the protocell?

• Study/Design of an ecosystem: One world utility for the study of an ecosystem
is the total bio-mass of the ecosystem. In a model-based forward problem, one
can study the effect of various interactions on the world utility. Alternatively, as
an inverse problem, one can investigate how to design an ecosystem which will
provide the best sustainable bio-diversity for a given mass (e.g., for a long term
space mission).

• Design of incentives in a Company: A “simple” world world utility for a com-
pany is the valuation of the company (share price times the number of out-
standing shares). The inverse problem consists of determining how to design
incentives that will induce the companies valuation to go up (e.g., what set of
salaries/benefits/stock options will induce the employees to take actions that will
benefit the corporation).

All of these problem share the property that they are inherently distributed sys-
tems where the interactions among the agents leads to complex behavior. Though
each one can be approached by conventional methods, how those methods need to
be modified to suit the particular application will be different in each case. The aim
of this chapter is to both accentuate the similarities among these problems and also
to highlight the need for a general approach which would address all these problems
within the same framework.

2 Review of Literature Related to Collectives

There are many approaches to analyzing and designing collectives that do not exactly
meet the needs of a “field of collectives” yet provide some part of the equation. The
rest of this section consists of brief presentations of some of these approaches, and

5 A nanocomputer is a computer with nano-scale components.
6 A protocell is a vessicle lacking conventional genetic material and organelles, especially an

artificially constructed one used to investigate cellular homeostasis.
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in particular characterizes them in terms of the properties of collectives discussed
above.

2.1 AI and Machine Learning

There is an extensive body of work in AI and machine learning that is related to
the design of collectives. Indeed, one of the most famous speculative works in the
field can be viewed as an argument that AI should be approached as a design of
collectives problem [163]. Below, we discuss some topics relevant to collectives from
this domain.

Distributed Artificial Intelligence

The field of Distributed Artificial Intelligence (DAI) has arisen as more and more tra-
ditional Artificial Intelligence (AI) tasks have migrated toward parallel implementa-
tion. The most direct approach to such implementations is to directly parallelize AI
production systems or the underlying programming languages [79, 189]. An alter-
native and more challenging approach is to use distributed computing, where not
only are the individual reasoning, planning and scheduling AI tasks parallelized, but
there are different modules with different such tasks, concurrently working toward a
common goal [118, 119, 143].

In a DAI, one needs to ensure that the task has been modularized in a way that
improves efficiency. Unfortunately, this usually requires a central controller whose
purpose is to allocate tasks and process the associated results. Moreover, designing
that controller in a traditional AI fashion often results in brittle solutions. Accord-
ingly, recently there has been a move toward both more autonomous modules and
fewer restrictions on the interactions among the modules [194].

Despite this evolution, DAI maintains the traditional AI concern with a pre-
fixed set of particular aspects of intelligent behavior (e.g. reasoning, understand-
ing, learning etc.) rather than on their cumulative character. As the idea that intelli-
gence may have more to do with the interaction among components started to take
shape [41, 42], focus shifted to concepts (e.g., multi-agent systems) that better incor-
porated that idea [121].

Multi-Agent Systems

The field of Multi-Agent Systems (MAS) is concerned with the interactions among
the members of such a set of agents [40, 92, 121, 204, 222], as well as the inner
workings of each agent in such a set (e.g., their learning algorithms) [36, 37, 38]. As
in computational ecologies and computational markets (see below), a well-designed
MAS is one that achieves a global task through the actions of its components. The
associated design steps involve [121]:

1. Decomposing a global task into distributable subcomponents, yielding tractable
tasks for each agent;
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2. Establishing communication channels that provide sufficient information to each
of the agents for it to achieve its task, but are not too unwieldly for the overall
system to sustain; and

3. Coordinating the agents in a way that ensures that they cooperate on the global
task, or at the very least does not allow them to pursue conflicting strategies in
trying to achieve their tasks.

Step (3) is rarely trivial; one of the main difficulties encountered in MAS design
is that agents act selfishly and artificial cooperation structures have to be imposed on
their behavior to enforce cooperation [13]. An active area of research, which holds
promise for addressing parts the design of collectives problem, is to determine how
selfish agents’ “incentives” have to be engineered in order to avoid problems such as
the tragedy of the commons (TOC) [209]. (This work draws on the economics litera-
ture, which we review separately below.) When simply providing the right incentives
is not sufficient, one can resort to strategies that actively induce agents to cooperate
rather than act selfishly. In such cases coordination [205], negotiations [135], coali-
tion formation [193, 195, 249] or contracting [3] among agents may be needed to
ensure that they do not work at cross purposes.

Unfortunately, all of these approaches share with DAI and its offshoots the prob-
lem of relying on hand-tailoring, and therefore being difficult to scale and often non-
robust. In addition, except as noted in the next subsection, they involve little to no
adaptivity, and therefore the constituent computational elements are usually not as
robust as they would need to be to provide the foundation for the field of collectives.

Reinforcement Learning

The maturing field of Reinforcement Learning (RL) provides a much needed tool
for the types of problems addressed by collectives. The goal of an RL algorithm
is to determine how, using those reward signals, the agent should update its action
policy to maximize its utility [123, 220, 221, 232]. Because RL generally provides
model-free7 and “online” learning features, it is ideally suited for the distributed en-
vironment where a “teacher” is not available and the agents need to learn successful
strategies based on “rewards” and “penalties” they receive from the overall system at
various intervals. It is even possible for the learners to use those rewards to modify
how they learn [199, 200].

Although work on RL dates back to Samuel’s checker player [191], relatively
recent theoretical [232] and empirical results [56, 224] have made RL one of the
most active areas in machine learning. Many problems ranging from controlling a
robot’s gait to controlling a chemical plant to allocating constrained resource have
been addressed with considerable success using RL [97, 114, 166, 186, 247]. In
particular, the RL algorithms T D(λ) (which rates potential states based on a value
function) [220] and Q–learning (which rates action-state pairs) [232] have been in-
vestigated extensively. A detailed investigation of RL is available in [123, 221, 232].

7 There exist some model-based variants of traditional RL. See for example [8].
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Intuitively, one might hope that RL would help us solve the distributed control
problem, since RL is adaptive, and, in general mode-free. However, by itself, con-
ventional single-agent RL does not provide a means for controlling large, distributed
systems. The problem is that the space of possible action policies for such systems
is too big to be searched. So although powerful and widely applicable, solitary RL
algorithms will not generally perform well on large distributed heterogeneous prob-
lems. It is however natural to consider deploying many RL algorithms rather than a
single one for these large distributed problems.

Reinforcement Learning-Based Multi-Agent Systems

Because it neither requires explicit modeling of the environment nor having a
“teacher” that provides the “correct” actions, the approach of having the individ-
ual agents in a MAS use RL is well-suited for MAS’s deployed in domains where
one has little knowledge about the environment and/or other agents. There are two
main approaches to designing such MAS’s:
(i) One has ‘team game agents’ that don’t know about each other and whose RL re-
wards are given by the performance of the entire system (so the joint actions of all
other agents form an “inanimate background” contributing to the reward signal each
agent receives);
(ii) One has ‘social agents’ that explicitly model each other and take each others’
actions into account.
Both (i) and (ii) can be viewed as ways to (try to) coordinate the agents in a MAS in
a robust fashion.
Team game agents: MAS’s with team game agents have been successfully applied
to a multitude of problems [56, 96, 107, 192, 198]. However, scaling to large systems
is a major issue with team game agents. The problem is that each agent must be able
to discern the effect of its actions on the overall performance of the system, since that
performance constitutes its reward signal. As the number of agents increases though,
the effects of any one agent’s actions (signal) will be swamped by the effects of other
agents (noise), making the agent unable to learn well, if at all. In addition, of course,
team game agents cannot be used in situations lacking centralized calculation and
broadcast of the single global reward signal.
Social agents: MAS’s whose agents take the actions of other agents into account
synthesize RL with game theoretic concepts (e.g., Nash equilibrium). They do this to
try to ensure that the overall system both moves toward achieving the overall global
goal and avoids often deleterious oscillatory behavior [53, 85, 111, 113, 112]. To that
end, the agents incorporate internal mechanisms that actively model the behavior of
other agents. In general this approach involves hand-tailoring for the problem, and
there are some well-studied domains (El Farol Bar problem) in which such modeling
is self-defeating [5, 238].

2.2 Game Theory

Game theory is the branch of mathematics concerned with formalized versions of
“games”, in the sense of chess, poker, nuclear arms races, and the like [11, 19, 30,
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73, 87, 148, 66, 207]. It is perhaps easiest to describe it by loosely defining some of
its terminology, which we do here and in the next subsection.

The simplest form of a game is that of ‘non-cooperative single-stage extensive-
form’ game, which involves the following situation: There are two or more agents
(called ‘players’ in the literature), each of which has a pre-specified set of possible
actions that it can follow. (A ‘finite’ game has finite sets of possible actions for all the
players.) In addition, each agent i has a utility function (also called a ‘payoff matrix’
for finite games). This maps any ‘profile’ of the action choices of all agents to an
associated utility value for agent i. (In a ‘zero-sum’ game, for every profile, the sum
of the payoffs to all the agents is zero.)

The agents choose their actions in a sequence, one after the other. The structure
determining what each agent knows concerning the action choices of the preceding
agents is known as the ‘information set’.8 Games in which each agent knows exactly
what the preceding (‘leader’) agent did are known as ‘Stackelberg games’.

In a ‘multi-stage’ game, after all the agents choose their first action, each agent
is provided some information concerning what the other agents did. The agent uses
this information to choose its next action. In the usual formulation, each agent gets
its payoff at the end of all of the game’s stages.

An agent’s ‘strategy’ is the rule it elects to follow mapping the information it has
at each stage of a game to its associated action. It is a ‘pure strategy’ if it is a de-
terministic rule. If instead the agent’s action is chosen by randomly sampling from a
distribution, that distribution is known a ‘mixed strategy’. Note that an agent’s strat-
egy concerns all possible sequences of provided information, even any that cannot
arise due to the strategies of the other agents.

Any multi-stage extensive-form game can be converted into a ‘normal form’
game, which is a single-stage game in which each agent is ignorant of the actions
of the other agents, so that all agents choose their actions “simultaneously”. This
conversion is achieved by having the “actions” of each agent in the normal form
game correspond to an entire strategy in the associated multi-stage extensive-form
game. The payoffs to all the agents in the normal form game for a particular strategy
profile is then given by the associated payoff matrices of the multi-stage extensive
form-game.

Nash Equilibrium

A ‘solution’ to a game, or an ‘equilibrium’, is a profile in which every agent be-
haves “rationally”. This means that every agent’s choice of strategy maximizes its
utility subject to a pre-specified set of conditions. In conventional game theory those
conditions involve, at a minimum, perfect knowledge of the payoff matrices of all
other players, and often also involve specification of what strategies the other agents

8 While stochastic choices of actions is central to game theory, most of the work in the field
assumes the information in information sets is in the form of definite facts, rather than
a probability distribution. Accordingly, there has been relatively little work incorporating
Shannon information theory into the analysis of information sets.
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adopted and the like. In particular, a ‘Nash equilibrium’ is a a profile where each
agent has chosen the best strategy it can, given the choices of the other agents. A
game may have no Nash equilibria, one equilibrium, or many equilibria in the space
of pure strategies. A beautiful and seminal theorem due to Nash proves that every
game has at least one Nash equilibrium in the space of mixed strategies [171].

There are several different reasons one might expect a game to result in a Nash
equilibrium. One is that it is the point that perfectly rational Bayesian agents would
adopt, assuming the probability distributions they used to calculate expected pay-
offs were consistent with one another [10, 124]. A related reason, arising even in a
non-Bayesian setting, is that a Nash equilibrium provides “consistent” predictions,
in that if all parties predict that the game will converge to a Nash equilibrium, no
one will benefit by changing strategies. Having a consistent prediction does not en-
sure that all agents’ payoffs are maximized though. The study of small perturbations
around Nash equilibria from a stochastic dynamics perspective is just one example
of a ‘refinement’ of Nash equilibrium, that provides a criterion for selecting a single
equilibrium state when more than one is present [154].

Cooperative Game Theory

In cooperative game theory the agents are able to enter binding contracts with one
another, and thereby coordinate their strategies. This allows the agents to avoid being
“stuck” in Nash equilibria that are Pareto inefficient, that is being stuck at equilib-
rium profiles in which all agents would benefit if only they could agree to all adopt
different strategies, with no possibility of betrayal. The characteristic function of a
game involves subsets (‘coalitions’) of agents playing the game. For each such sub-
set, it gives the sum of the payoffs of the agents in that subset that those agents can
guarantee if they coordinate their strategies. An imputation is a division of such a
guaranteed sum among the members of the coalition. It is often the case that for a
subset of the agents in a coalition one imputation dominates another, meaning that
under threat of leaving the coalition that subset of agents can demand the first im-
putation rather than the second. So the problem each agent i is confronted with in
a cooperative game is which set of other agents to form a coalition with, given the
characteristic function of the game and the associated imputations i can demand of
its partners. There are several different kinds of solution for cooperative games that
have received detailed study, varying in how the agents address this problem of who
to form a coalition with. Some of the more popular are the ‘core’, the ‘Shapley value’,
the ‘stable set solution’, and the ‘nucleolus’.

In the real world, the actual underlying game the agents are playing does not
only involve the actions considered in cooperative game theory’s analysis of coali-
tions and imputations. The strategies of that underlying game also involve bargaining
behavior, considerations of trying to cheat on a given contract, bluffing and threats,
and the like. In many respects, by concentrating on solutions for coalition formation
and their relation with the characteristic function, cooperative game theory abstracts
away these details of the true underlying game. Conversely though, progress has
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recently been made in understanding how cooperative games can arise from non-
cooperative games, as they must in the real world [11].

Evolution and Learning in Games

Not surprisingly, game theory has come to play a large role in the field of multi-agent
systems. In addition, due to Darwinian natural selection, one might expect game
theory to be quite important in population biology, in which the “utility functions” of
the individual agents can be taken to be their reproductive fitness. There is an entire
subfield of game theory concerned with this connection with population biology,
called ‘evolutionary game theory’ [155, 157].

To introduce evolutionary game theory, consider a game in which all players
share the same space of possible strategies, and there is an additional space of possi-
ble ‘attribute vectors’ that characterize an agent, along with a probability distribution
g across that new space. (Examples of attributes in the physical world could be things
like size, speed, etc.) We select a set of agents to play a game by randomly sampling
g. Those agents’ attribute vectors jointly determine the payoff matrices of each of the
individual agents. (Intuitively, what benefit accrues to an agent for taking a particular
action depends on its attributes and those of the other agents.) However each agent
i has limited information concerning both its attribute vector and that of the other
players in the game, information encapsulated in an ‘information structure’. The in-
formation structure specifies how much each agent knows concerning the game it is
playing.

In this context, we enlarge the meaning of the term “strategy” to not just be a
mapping from information sets and the like to actions, but from entire information
structures to actions. In addition to the distribution g over attribute vectors, we also
have a distribution over strategies, h. A strategy s is a ‘population strategy’ if h is a
delta function about s. Intuitively, we have a population strategy when each animal
in a population “follows the same behavioral rules”, rules that take as input what
the animal is able to discern about its strengths and weakness relative to those other
members of the population, and produce as output how the animal will act in the
presence of such animals.

Given g, a population strategy centered about s, and its own attribute vector, any
player i in the support of g has an expected payoff for any strategy it might adopt.
When i’s payoff could not improve if it were to adopt any strategy other than s, we
say that s is ‘evolutionary stable’. Intuitively, an evolutionary stable strategy is one
that is stable with respect to the introduction of mutants into the population.

Now consider a sequence of such evolutionary games. Interpret the payoff that
any agent receives after being involved in such a game as the ‘reproductive fitness’
of that agent, in the biological sense. So the higher the payoff the agent receives, in
comparison to the fitnesses of the other agents, the more “offspring” it has that get
propagated to the next game. In the continuum-time limit, where games are indexed
by the real number t, this can be formalized by a differential equation. This equation
specifies the derivative of gt evaluated for each agent i’s attribute vector, as a mono-
tonically increasing function of the relative difference between the payoff of i and the
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average payoff of all the agents. (We also have such an equation for h.) The resulting
dynamics is known as ‘replicator dynamics’, with an evolutionary stable population
strategy, if it exists, being one particular fixed point of the dynamics.

Now consider removing the reproductive aspect of evolutionary game theory, and
instead have each agent propagate to the next game, with “memory” of the events of
the preceding game. Furthermore, allow each agent to modify its strategy from one
game to the next by “learning” from its memory of past games, in a bounded rational
manner. The field of learning in games is concerned with exactly such situations [86,
12, 17, 26, 70, 126, 178, 173]. Most of the formal work in this field involves simple
models for the learning process of the agents. For example, in ‘fictitious play’ [86],
in each successive game, each agent i adopts what would be its best strategy if its
opponents chose their strategies according to the empirical frequency distribution of
such strategies that i has encountered in the past. More sophisticated versions of this
work employ simple Bayesian learning algorithms, or re-inventions of some of the
techniques of the RL community [190]. Typically in learning in games one defines
a payoff to the agent for a sequence of games, for example as a discounted sum of
the payoffs in each of the constituent games. Within this framework one can study
the long term effects of strategies such as cooperation and see if they arise naturally
and if so, under what circumstances.

Many aspects of real world games that do not occur very naturally otherwise arise
spontaneously in these kinds of games. For example, when the number of games to
be played is not pre-fixed, it may behoove a particular agent i to treat its opponent
better than it would otherwise, since i may have to rely on that other agent’s treat-
ing it well in the future, if they end up playing each other again. This framework
also allows us to investigate the dependence of evolving strategies on the amount of
information available to the agents [159]; the effect of communication on the evo-
lution of cooperation [160, 162]; and the parallels between auctions and economic
theory [108, 161].

In many respects, learning in games is even more relevant to the study of col-
lectives than is traditional game theory. However in general, it lacks a well defined
world utility and is almost exclusively focused on the forward problem, making it a
difficult starting point for a field of collectives.

2.3 Other Social Science–Inspired Systems

Some human economies provides examples of naturally occurring systems that can
be viewed as a (more or less) well-performing collectives. The field of economics
provides much more though. Both empirical economics (e.g., economic history,
experimental economics) and theoretical economics (e.g., general equilibrium the-
ory [4], theory of optimal taxation [164]) provide a rich literature on strategic sit-
uations where many parties interact. In fact, much of economics can be viewed as
concerning how to maximize certain constrained kinds of world utilities, when there
are certain (very strong) restrictions on the individual agents and their interactions,
and in particular when we have limited freedom in setting the utility functions of
those agents.
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Mechanism Design

One way to try to induce a large collective to reach an equilibrium point without
centralize control is via an auction.9 (This is the approach usually employed in com-
putational markets — see below.) Along with optimal taxation and public good the-
ory [137], the design of auctions is the subject of the field of mechanism design.
Broadly defined, mechanism design is concerned with the incentives that must be
applied to any set of agents that interact and exchange goods [87, 164, 229] in order
to get those agents to exhibit desired behavior. Usually the desired behavior con-
cerns pre-specified ‘inherent’ utility functions of some sort for each of the individ-
ual agents. In particular, mechanism design is often concerned with the incentives
that must be superimposed on such inherent utility functions to guide the agents
to a ‘(Pareto) efficient’ (or ‘Pareto optimal’) point, that is to a point in which no
agent’s inherent utility can be improved without hurting another agent’s inherent
utility [86, 87].

One particularly important type of such an incentive scheme is an auction. When
many agents interact in a common environment often there needs to be a structure
that supports the exchange of goods or information among those agents. Auctions
provide one such (centralized) structure for managing exchanges of goods. For ex-
ample, in the English auction all the agents come together and ‘bid’ for a good, and
the price of the good is increased until only one bidder remains, who gets the good
in exchange for the resource bid. As another example, in the Dutch auction the price
of a good is decreased until one buyer is willing to pay the current price.

All auctions perform the same task: match supply and demand. As such, auctions
are one of the ways in which price equilibration among a set of interacting agents can
be achieved. However very few world utilities have their maximum occur at a point
that is Pareto optimal for the pre-set inherent utility functions. Accordingly, unless
we are very fortunate in the relation between those inherent utility functions and
(in general separately specified) world utility, knowing how to induce such a Pareto
optimal point is of little value. For example, in a transaction in an English auction
both the seller and the buyer benefit. They may even have arrived at an allocation
which is efficient. However, in that the winner may well have been willing to pay
more for the good, such an outcome may confound the goal of the market designer,
if that designer’s goal is to maximize revenue. This point is returned to below, in the
context of computational economics.

Another, perhaps more intuitive perspective, is to view the restrictions of mech-
anism design as concerning the private utility functions of the individual agents.
Typically in mechanism design the private utility function for each agent η, which
maps states of the entire world (including the internal state of the agent itself) to R ,
is of the form γη(xη,1,xη,2, ...,xη,n, Tη(yη,1,yη,2, ...,yη,m)), where γη(.) is agent η’s

9 We do not discuss general equilibrium theory here in detail, because though it deals with
the interaction among multiple markets to set the market “clearing” price for the goods,
it is not appropriate for the study of collectives: it requires centralized control (Walrasian
auctioner), does not allow for dynamic interactions and in general, there is no reason to
believe that having the markets clear maximizes a world utility.
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pre-fixed inherent utility function, the xη,1,xη,2, ...,xη,n constitute the first n of the
n + k variables that that function depends on, and Tη(.) is the R k-valued “mecha-
nism” function the designer can set, the yη,1,yη,2, ...,yη,m being the variables making
up its arguments. Unlike the private utility world utility can depend on all of the
xη,1, ...,xη,n,yη,1,yη,2, ...,yη,m directly (as well as depend on other entirely different
variables). As an example, the yη,1,yη,2, ...,yη,m could be a set of all agents’ bids at an
auction, Tη(.) could be R 2-valued, giving the amount of change in η’s owned quan-
tities of both money and the item up for bid, and the xη,1, ...,xη,n could parameterize
η’s happiness trade-off relating owned quantities of the good and of money.

Typically γη(.) and the choice of what variables make up the arguments yη,1,yη,2, ...,yη,m

to Tη are fixed a priori, with only the function Tη(.) allowed to vary in the design. In
addition, often there are a priori restrictions on the functional form of the Tη. For ex-
ample, often the Tη are not allowed to vary with η. More precisely, usually they must
be invariant under the transformation η→ η′ in both the index to the function and the
indices to its arguments. This means in particular that the designer can’t “cheat” and
have the functional forms of the Tη vary from one η to another in a way that reflects
the variations across the (often pre-determined) associated vectors (xη,1, ...,xη,n). For
example, typically an auction mechanism determines who gets what goods for what
price in a manner that is independent of the identities of the bidding agents, and in
particular does not directly reflect any internal happiness trade-off parameters of the
agents that aren’t reflected in their bids.

From the perspective of a collective, these kinds of restrictions on private utilities
only hold in a small subset of the potential computational problems, and constitute a
severe handicap in other scenarios. Another limitation of most of the work on mech-
anism design is that either it assumes a particular computational model for the agent,
or (more commonly) focuses on (game-theoretic) equilibria. This limited nature of
the treatment of off-equilibrium scenarios is intimately related to the restrictions on
the form of the private utility. If there are no restrictions on the private utilities, then
there is a trivial solution for how to set such utilities to maximize the world utility
at equilibrium: Have each such utility simply equal the world utility, in a so-called
“team game”. To have the analysis be non-trivial, restrictions like those on the private
utilities are needed.

In practice though, no real system is at a game-theoretic equilibrium, due to
bounded rationality. In particular, it means that if one considers mechanism design
in the limiting case of no restrictions on γ(.), the associated “mechanism design
solution” of a team game often will result in poor performance [238]. Team the-
ory [105, 153] is one approach that has been tried to circumvent this problem. The
idea there is to remove all notions of a private or inherent utility, and solve directly
for the strategy profile that will maximize the world utility. Needless to say though,
such an approach becomes extraordinarily difficult for all but the simplest problems,
and requires centralized, completely personalized control and communication, and
exact modeling of the system’s dynamics.
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Computational Economics

‘Computational economies’ are schemes inspired by economics, and more specifi-
cally by general equilibrium theory and mechanism design theory, for managing the
components of a distributed computational system. They work by having a ‘compu-
tational market’, akin to an auction, guide the interactions among those components.
Such a market is defined as any structure that allows the components of the system to
exchange information on relative valuation of resources (as in an auction), establish
equilibrium states (e.g., determine market clearing prices) and exchange resources
(i.e., engage in trades).

Such computational economies can be used to investigate real economies and bi-
ological systems [31, 34, 35, 128]. They can also be used to design distributed com-
putational systems. For example, such computational economies are well-suited to
some distributed resource allocation problems, where each component of the system
can either directly produce the “goods” it needs or acquire them through trades with
other components. Computational markets often allow for far more heterogeneity
in the components than do conventional resource allocation schemes. Furthermore,
there is both theoretical and empirical evidence suggesting that such markets are of-
ten able to settle to equilibrium states. For example, auctions find prices that satisfy
both the seller and the buyer which results in an increase in the utility of both (else
one or the other would not have agreed to the sale). Assuming that all parties are
free to pursue trading opportunities, such mechanisms move the system to a point
where all possible bilateral trades that could improve the utility of both parties are
exhausted.

Now restrict attention to the case, implicit in much of computational market
work, with the following characteristics: First, world utility can be expressed as a
monotonically increasing function F where each argument i of F can in turn be in-
terpreted as the value of a pre-specified utility function fi for agent i. Second, each
of those fi is a function of an i-indexed ‘goods vector’ xi of the non-perishable goods
“owned” by agent i. The components of that vector are xi, j, and the overall system
dynamics is restricted to conserve the vector ∑i xi, j. (There are also some other, more
technical conditions.) As an example, the resource allocation problem can be viewed
as concerning such vectors of “owned” goods.

Due to the second of our two conditions, one can integrate a market-clearing
mechanism into any system of this sort. Due to the first condition, since in a market
equilibrium with non-perishable goods no (rational) agent ends up with a value of
its utility function lower than the one it started with, the value of the world utility
function must be higher at equilibrium than it was initially. In fact, so long as the
individual agents are smart enough to avoid all trades in which they do not benefit,
any computational market can only improve this kind of world utility, even if it does
not achieve the market equilibrium.

This line of reasoning provides one of the main reasons to use computational
markets in those situations in which they can be applied. Conversely, it underscores
one of the major limitations of such markets: Starting with an arbitrary world utility
function with arbitrary dynamical restrictions, it may be quite difficult to cast that
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function as a monotonically increasing F taking as arguments a set of agents’ goods-
vector-based utilities fi, if we require that those fi be well-enough behaved that we
can reasonably expect the agents to optimize them in a market setting.

One example of a computational economy being used for resource allocation is
Huberman and Clearwater’s use of a double–blind auction to solve the complex task
of controlling the temperature of a building. In this case, each agent (individual tem-
perature controller) bids to buy or sell cool or warm air. This market mechanism
leads to an equitable temperature distribution in the system [116]. Other domains
where market mechanisms were successfully applied include purchasing memory in
an operating systems [50], allocating virtual circuits [75], “stealing” unused CPU
cycles in a network of computers [69, 230], predicting option futures in financial
markets [185], and numerous scheduling and distributed resource allocation prob-
lems [138, 142, 210, 218, 234, 235].

Computational economics can also be used for tasks not tightly coupled to re-
source allocation. For example, following the work of Maes [151] and Ferber [74],
Baum shows how by using computational markets a large number of agents can inter-
act and cooperate to solve a variant of the blocks world problem [22, 23]. However,
market-based computational economics relies on both centralized communication
and centralized control to some degree, raising scalability issues. Furthermore, in
practice, the applicability of computational economies depends greatly on the do-
main [225], making it a difficult starting point for a field of collectives.

2.4 Biologically Inspired Systems

Properly speaking, biological systems do not involve utility functions and searches
across them with learning algorithms. However it has long been appreciated that
there are many ways in which viewing biological systems as involving searches over
such functions can lead to deeper understanding of them [203, 244]. Conversely,
some have argued that the mechanism underlying biological systems can be used to
help design search algorithms [109].10

These kinds of reasoning which relate utility functions and biological systems
have traditionally focussed on the case of a single biological system operating in
some external environment. If we extend this kind of reasoning, to a set of biological
systems that are co-evolving with one another, then we have essentially arrived at
biologically-based collectives. This section discusses some of how previous work in
the literature bears on this relationship between collectives and biology.

Population Biology and Ecological Modeling

The fields of population biology and ecological modeling are concerned with the
large-scale “emergent” processes that govern the systems that consist of many (rel-
atively) simple entities interacting with one another [24, 99]. As usually cast, the

10 See [150, 236] though for some counter-arguments to the particular claims most commonly
made in this regard.
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“simple entities” are members of one or more species, and the interactions are some
mathematical abstraction of the process of natural selection as it occurs in biological
systems (involving processes like genetic reproduction of various sorts, genotype-
phenotype mappings, inter and intra-species competitions for resources, etc.). Pop-
ulation Biology and ecological modeling in this context addresses questions con-
cerning the dynamics of the resultant ecosystem, and in particular how its long-term
behavior depends on the details of the interactions between the constituent entities.
Broadly construed, the paradigm of ecological modeling can even be broadened to
study how natural selection and self-regulating feedback creates a stable planet-wide
ecological environment—Gaia [144].

The underlying mathematical models of other fields can often be usefully mod-
ified to apply to the kinds of systems population biology is interested in [14]. (See
also the discussion in the game theory subsection above.) Conversely, the under-
lying mathematical models of population biology and ecological modeling can be
applied to other non-biological systems. In particular, those models shed light on
social issues such as the emergence of language or culture, warfare, and economic
competition [71, 72, 88]. They also can be used to investigate more abstract issues
concerning the behavior of large complex systems with many interacting components
[89, 98, 156, 176, 184].

Going a bit further afield, an approach that is related in spirit to ecological mod-
eling is ‘computational ecologies’. These are large distributed systems where each
component of the system’s acting (seemingly) independently results in complex
global behavior. Those components are viewed as constituting an “ecology” in an
abstract sense (although much of the mathematics is not derived from the traditional
field of ecological modeling). In particular, one can investigate how the dynamics
of the ecology is influenced by the information available to each component and
how cooperation and communication among the components affects that dynam-
ics [115, 117].

Although in some ways the most closely related to collectives of the current
ecology-inspired research, the fields of population biology and computational ecolo-
gies do not provide a full science of collectives. These fields are primarily concerned
with the “forward problem” of determining the dynamics that arises from certain
choices of the underlying system. Unless one’s desired dynamics is sufficiently close
to some dynamics that was previously catalogued (during one’s investigation of the
forward problem), one has very little information on how to set up the components
and their interactions to achieve that desired dynamics.

Swarm Intelligence

The field of ‘swarm intelligence’ is concerned with systems that are modeled after
social insect colonies, so that the different components of the system are queen,
worker, soldier, etc. It can be viewed as ecological modeling in which the individual
entities have extremely limited computing capacity and/or action sets, and in which
there are very few types of entities. The premise of the field is that the rich behavior
of social insect colonies arises not from the sophistication of any individual entity
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in the colony, but from the interaction among those entities. The objective of current
research is to uncover kinds of interactions among the entity types that lead to pre-
specified behavior of some sort.

More speculatively, the study of social insect colonies may also provide insight
into how to achieve learning in large distributed systems. This is because at the level
of the individual insect in a colony, very little (or no) learning takes place. However
across evolutionary time-scales the social insect species as a whole functions as if
the various individual types in a colony had “learned” their specific functions. The
“learning” is the direct result of natural selection. (See the discussion on this topic in
the subsection on ecological modeling.)

Swarm intelligences have been used to adaptively allocate tasks [33, 136], solve
the traveling salesman problem [62, 63] and route data efficiently in dynamic net-
works [32, 201, 219] among others. However, there is no general framework for
adapting swarm intelligences to maximize particular world utility functions. Accord-
ingly, such intelligences generally need to be hand-tailored for each application.

2.5 Physics-Based Systems

Statistical Physics

Equilibrium statistical physics is concerned with the stable state character of large
numbers of very simple physical objects, interacting according to well-specified local
deterministic laws, with probabilistic noise processes superimposed [6, 188]. Typi-
cally there is no sense in which such systems can be said to have centralized control,
since all particles contribute comparably to the overall dynamics.

Aside from mesoscopic statistical physics, the numbers of particles considered
are usually huge (e.g., 1023), and the particles themselves are extraordinarily simple,
typically having only a few degrees of freedom. Moreover, the noise processes usu-
ally considered are highly restricted, being those that are formed by “baths”, of heat,
particles, and the like. Similarly, almost all of the field restricts itself to deterministic
laws that are readily encapsulated in Hamilton’s equations (Schrodinger’s equation
and its field-theoretic variants for quantum statistical physics). In fact, much of equi-
librium statistical physics isn’t even concerned with the dynamic laws by themselves
(as for example is stochastic Markov processes). Rather it is concerned with invari-
ants of those laws (e.g., energy), invariants that relate the states of all of the particles.
Deterministic laws without such readily-discoverable invariants are outside of the
purview of much of statistical physics.

One potential use of statistical physics for collectives involves taking the systems
that statistical physics analyzes, especially those analyzed in its condensed matter
variant (e.g., spin glasses [213, 214]), as simplified models of a class of collectives.
This approach is used in some of the analyses of the El Farol Bar problem, also called
the minority game (see below) [5, 48]. It is used more overtly in (for example) the
work of Galam [90], in which the equilibrium coalitions of a set of “countries” are
modeled in terms of spin glasses. This approach cannot provide a general collectives
framework though. This is due to its not providing a general solution to arbitrary
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collectives inversion problems, being only concerned with the kinds of systems dis-
cussed above, and to its not employing RL algorithms.11

Another contribution that statistical physics can make is with the mathemati-
cal techniques it has developed for its own purposes, like mean field theory, self-
averaging approximations, phase transitions, Monte Carlo techniques, the replica
trick, and tools to analyze the thermodynamic limit in which the number of parti-
cles goes to infinity. Although such techniques have not yet been applied to collec-
tives/footnotePreliminary results in combining Monte Carlo techniques with collec-
tives has yielded improvements of several orders of magnitude over traditional Monte
Carlo techniques [240], they have been successfully applied to related fields. This is
exemplified by the use of the replica trick to analyze two-player zero-sum games
with random payoff matrices in the thermodynamic limit of the number of strategies
in [27]. Other examples are the numeric investigation of iterated prisoner’s dilemma
played on a lattice [223], the analysis of stochastic games by expressing of deviation
from rationality in the form of a “heat bath” [154], and the use of topological entropy
to quantify the complexity of a voting system studied in [158].

Other quite recent work in the statistical physics literature is formally identical
to that in other fields, but presents it from a novel perspective. A good example of
this is [211], which is concerned with the problem of controlling a spatially extended
system with a single controller, by using an algorithm that is identical to a simple-
minded proportional RL algorithm (in essence, a rediscovery of RL).

Action Extremization

Much of the theory of physics can be cast as solving for the extremization of an
actional, which is a functional of the worldline of an entire (potentially many-
component) system across all time. The solution to that extremization problem con-
stitutes the actual worldline followed by the system. In this way the calculus of vari-
ations can be used to solve for the worldline of a dynamic system. As an example,
simple Newtonian dynamics can be cast as solving for the worldline of the system
that extremizes a quantity called the ‘Lagrangian’, which is a function of that world-
line and of certain parameters (e.g., the ‘potential energy’) governing the system at
hand. In this instance, the calculus of variations simply results in Newton’s laws.

If we take the dynamic system to be a collective, we are assured that its worldline
automatically maximizes a “world utility” consisting of the value of the associated
actional. If we change physical aspects of the system that determine the functional
form of the actional (e.g., change the system’s potential energy function), then we
change the world utility, and we are assured that our collective maximizes that new
world utility. Counter-intuitive physical systems, like the strings-and-springs systems

11 In regard to the latter point however, it’s interesting to speculate about recasting statistical
physics as a collective, by viewing each of the particles in the physical system as running
an “RL algorithm” that perfectly maximizes the “utility function” of its Lagrangian, given
the “actions” of the other particles. In this perspective, many-particle physical systems are
multi-stage games that are at Nash equilibrium in each stage. So for example, a frustrated
spin glass is such a system at a Nash equilibrium that is not Pareto optimal.
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that exhibit Braess’ paradox [20], are simply systems for which the world utility
implicit in our human intuition is extremized at a point different from the one that
extremizes the system’s actional.

The challenge in exploiting this to solve the design of collectives problem is in
translating an arbitrary provided global goal for the collective into a parameterized
actional. Note that that actional must govern the dynamics of the collective, and
the parameters of the actional must be physical variables in the collective, variables
whose values we can modify.

Active Walker Models

The field of active walker models [21, 100, 101] is concerned with modeling “walk-
ers” (be they human walkers or instead simple physical objects) crossing fields along
trajectories, where those trajectories are a function of several factors, including in
particular the trails already worn into the field. Often the kind of trajectories consid-
ered are those that can be cast as solutions to actional extremization problems so that
the walkers can be explicitly viewed as agents maximizing a private utility.

One of the primary concerns with the field of active walker models is how the
trails worn in the field change with time to reach a final equilibrium state. The prob-
lem of how to design the cement pathways in the field (and other physical features
of the field) so that the final paths actually followed by the walkers will have certain
desirable characteristics is then one of solving for parameters of the actional that will
result in the desired worldline. This is a special instance of the inverse problem of
how to design a collective.

Using active walker models this way to design collectives, like action extremiza-
tion in general, probably has limited applicability. Also, it is not clear how robust
such a design approach might be, or whether it would be scalable and exempt from
the need for hand-tailoring.

2.6 Other Related Subjects

This subsection presents a “catch-all” of other fields that have little in common with
one another and while either still nascent or not extremely closely related to collec-
tives, bear some relation to collectives.

Stochastic Fields

An extremely well-researched body of work concerns the mathematical and nu-
meric behavior of systems for which the probability distribution over possible fu-
ture states conditioned on preceding states is explicitly provided. This work involves
many aspects of Monte Carlo numerical algorithms [172], all of Markov Chains
[80, 177, 215], and especially Markov fields, a topic that encompasses the Chapman-
Kolmogorov equations [91] and its variants: Liouville’s equation, the Fokker-Plank
equation, and the Detailed-balance equation in particular. Non-linear dynamics is
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also related to this body of work (see the synopsis of iterated function systems be-
low and the synopsis of cellular automata above), as is Markov competitive decision
processes (see the synopsis of game theory above).

Formally, one can cast the problem of designing a collective as how to fix each
of the conditional transition probability distributions of the individual elements of a
stochastic field so that the aggregate behavior of the overall system is of a desired
form.12

Amorphous computing and Control of Smart Matter

Amorphous computing grew out of the idea of replacing traditional computer de-
sign, with its requirements for high reliability of the components of the computer,
with a novel approach in which widespread unreliability of those components would
not interfere with the computation [2, 1]. Some of its more speculative aspects are
concerned with “how to program” a massively distributed, noisy system of com-
ponents which may consist in part of biochemical and/or biomechanical compo-
nents [131, 233]. Work here has tended to focus on schemes for how to robustly
induce desired geometric dynamics across the physical body of the amorphous com-
puter — issue that are closely related to morphogenesis, and thereby lend credence
to the idea that biochemical components are a promising approach.

Especially in its limit of computers with very small constituent components,
amorphous computing also is closely related to the fields of nanotechnology [64].
As the prospect of nanotechnology-driven mechanical systems gets more concrete,
the daunting problem of how to robustly control, power, and sustain protean sys-
tems made up of extremely large sets of nano-scale devices looms more impor-
tant [95, 96, 107]. If this problem were to be solved one would in essence have
“smart matter”. For example, one would be able to “paint” an airplane wing with
such matter and have it improve drag and lift properties significantly.

Self Organizing Systems

The concept of self-organization and self-organized criticality [15] was originally
developed to help understand why many distributed physical systems are attracted to
critical states that possess long-range dynamic correlations in the large-scale charac-
teristics of the system. It provides a powerful framework for analyzing both biolog-
ical and economic systems. For example, natural selection (particularly punctuated

12 In contrast, in the field of Markov decision processes, discussed in [45], the full system may
be a Markov field, but the system designer only sets the conditional transition probability
distribution of a few of the field elements at most, to the appropriate “decision rules”.
Unfortunately, it is hard to imagine how to use the results of this field to design collectives
because of major scaling problems. Any decision process must accurately model likely
future modifications to its own behavior — often an extremely daunting task [150]. What’s
worse, if multiple such decision processes are running concurrently in the system, each
such process must also model the others, potentially needing to model them in their full
complexity.
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equilibrium [68, 93]) can be likened to self-organizing dynamical system, and some
have argued it shares many the properties (e.g., scale invariance) of such systems
[57]. Similarly, one can view the economic order that results from the actions of hu-
man agents as a case of self-organization [59]. The relationship between complexity
and self-organization is a particularly important one, in that it provides the potential
laws that allow order to arise from chaos [125].

Adaptive Control Theory

Adaptive control [7, 196], and in particular adaptive control involving locally
weighted RL algorithms [9, 165], constitute a broadly applicable framework for
controlling small, potentially inexactly modeled systems. Augmented by techniques
in the control of chaotic systems [52, 60, 61], they constitute a very successful way
of solving the “inverse problem” for such systems. Unfortunately, it is not clear how
one could even attempt to scale such techniques up to the massively distributed sys-
tems of interest in collectives.

3 COIN Framework

The previous section provided a summary of different fields that address various is-
sues pertinent to the field of collectives. In this section, we summarize the COIN
(Collective Intelligence) framework, which is one of the first frameworks that aims
to bridge the gap between the needs of the field of collectives and the extant analy-
sis/design methods13.

3.1 Central Equation

Let Z be an arbitrary vector space whose elements z give the joint move of all agents
in the system (i.e., z specifies the full “worldline” consisting of the actions/states of
all the agents). The world utility G(z), is a function of the full worldline, and we are
concerned with the problem of finding the z that maximizes G(z).

In addition to G, for each agent η, there is a private utility function {gη}. The
agents act to improve their individual private utility functions, even though, we, as
system designers are only concerned with the value of the world utility G. To specify
all agents other than η, we will use the notation−η.

Our uncertainty concerning the behavior of the system is reflected in a probability
distribution over Z. Our ability to control the system consists of setting the value
of some characteristic of the agents, e.g., setting the private functions of the agents.
Indicating that value by s, our analysis revolves around the following central equation
for P(G | s), which follows from Bayes’ theorem:

P(G | s) =

Z

dεGP(G | εG,s)
Z

dεgP(εG | εg,s)P(εg | s) , (1)

13 The full COIN theory is presented in Chapter 2.



A Survey of Collectives 25

where εg is the vector of the “intelligences” of the agents with respect to their asso-
ciated private functions, and εG is the vector of the intelligences of the agents with
respect to G. Intuitively, these vectors indicate what percentage of η’s actions would
have resulted in lower utility.14 In this chapter, we use intelligence vectors as decom-
position variables for Equation 1.

Note that εgη(z) = 1 means that player η is fully rational at z, in that its move
maximizes the value of its utility, given the moves of the players. In other words, a
point z where εgη(z) = 1 for all players η is one that meets the definition of a game-
theory Nash equilibrium. On the other hand, a z at which all components of εG = 1
is a local maximum of G (or more precisely, a critical point of the G(z) surface). So
if we can get these two vectors to be identical, then if the agents do well enough at
maximizing their private utilities we are assured we will be near a local maximum of
G.

To formalize this, consider our decomposition of P(G | s). If we can choose s
so that the third conditional probability in the integrand, P(εg | s), is peaked around
vectors εg all of whose components are close to 1 (that is agents are able to “learn”
their tasks), then we have likely induced large private utility intelligences (this issue
is traditially addressed in the field of machine learning). If we can also have the sec-
ond term, P(εG | εg,s), be peaked about εG equal to εg (that is the private and world
utilities are aligned), then εG will also be large (this issue is traditionally addressed in
mechanism design). Finally, if the first term in the integrand, P(G | εG,s), is peaked
about high G when εG is large, then our choice of s will likely result in high G, as
desired (this issue arises in fields such as operations research, evolutionary program-
ming etc.).

3.2 Factoredness and Learnability

For high values of G to be achieved in a collective, the private utility functions of the
agents needs to satisfy two properties (i.e., have good form for the second and third
of Equation 1). 15 First, the private utility functions need to be “aligned with G”, a
need that is expressed in the second term of Equation 1. In particular, regardless of
the details of the stochastic environment in which the agents operate, or of the details
of the learning algorithms of the agents, if εg equals εG exactly for all z, the desired
form for the second term in Equation 1 is assured. For such systems, we have:

gη(z)≥ gη(z′) ⇔ G(z) ≥ G(z′) ∀z,z′ s.t. z−η = z′−η .

Intuitively, for all pairs of states z and z′ that differ only for agent η, a change in
η’s state that increases its private utility cannot decrease the world utility. We call

14 Intelligence is formally defined in Chapter 2.
15 Non-game theory-based function maximization techniques like simulated annealing instead

address how to have term 1 have the desired form. They do this by trying to ensure that the
local maxima that the underlying system ultimately settles near have high G, by “trading
off exploration and exploitation”. One can combine such term-1-based techniques with
the techniques presented here, The resultant hybrid algorithm, addressing all three terms,
outperforms simulated annealing by over two orders of magnitude [240].
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such a system factored. In game theory language, the private utility function Nash
equilibria of a factored system are local maxima of G. In addition to this desirable
equilibrium behavior, factored systems also automatically provide appropriate off-
equilibrium incentives to the agents (an issue generally not considered in the game
theory / mechanism design literature).

Second, we want the agents’ private utility functions to have high learnabil-
ity, intuitively meaning that an agent’s utility should be sensitive to its own actions
and insensitive to actions of others. This requirement that private utility functions
have high “signal-to-noise” arises in the third term. As an example, consider a “team
game” where the private utility functions are set to G. [56] Such a system is tautolog-
ically factored. However team games often have low learnability, because in a large
system an agent will have a difficult time discerning the effects of its actions on G.
As a consequence, each η may have difficulty achieving high gη in such a system.
Loosely speaking, agent η’s learnability is the ratio of the sensitivity of gη to η’s
actions to the sensitivity gη to the actions of all other agents. So at a given state z,
the higher the learnability, the more gη(z) depends on the move of agent η, i.e., the
better the associated signal-to-noise ratio for η. Intuitively then, higher learnability
means it is easier for η to achieve a large value of its utility.

3.3 Difference Utilities

It is possible to solve for the set of all private utilities that are factored with respect to
a particular world utility. Unfortunately, in general it is not possible for a collective
both to be factored and to have perfect learnability for all of its players (i.e., no
dependence of any gη on any agent other than η) for all of its agents [238]. However,
consider difference utilities, which are of the form:

DU(z) = G(z)−Γ( f (z)) , (2)

where Γ( f ) is independent of zη. Such difference utilities are factored [238]. In ad-
dition, under usually benign approximations, learnability is maximized over the set
of difference utilities by choosing

Γ( f (z)) = E(G | z −η,s) , (3)

up to an overall additive constant. We call the resultant difference utility the Aris-
tocrat utility (AU). If each player η uses an appropriately rescaled version of the
associated AU as its private utility function, then we have ensured good form for
both terms 2 and 3 in Equation 1.

Using AU in practice is sometimes difficult, due to the need to evaluate the ex-
pectation value. Fortunately there are other utility functions that, while being easier
to evaluate than AU, still are both factored and possess superior learnability to the
team game utility, gη = G. One such private utility function is the Wonderful Life
Utility (WLU). The WLU for player η is parameterized by a pre-fixed clamping
parameter CLη chosen from among η’s possible moves:
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Fig. 1. This example shows the impact of the clamping operation on the joint state of a four-
agent system where each agent has three possible actions, and each such action is represented
by a three-dimensional unary vector. The first matrix represents the joint state of the system z
where agent 1 has selected action 1, agent 2 has selected action 3, agent 3 has selected action
1 and agent 4 has selected action 2. The second matrix displays the effect of clamping agent
2’s action to the “null” vector (i.e., replacing zη2 with 0). The third matrix shows the effect
of instead clamping agent 2’s move to the “average” action vector a = {.33, .33, .33}, which
amounts to replacing that agent’s move with the “illegal” move of fractionally taking each
possible move (zη2 = a).

WLUη ≡ G(z)−G(z −η,CLη) . (4)

WLU is factored no matter what the choice of clamping parameter. Furthermore,
while not matching the high learnability of AU, WLU usually has far better learn-
ability than does a team game, because most of the “noise” due to other agents is
removed from η’s utility. Therefore, WLU generally results in better performance
than does team game utilities [228, 238].

Figure 1 provides an example of clamping. As in that example, in many circum-
stances there is a particular choice of clamping parameter for agent η that is a “null”
move for that agent, equivalent to removing that agent from the system.16

However it is usually the case that using WLU with a clamping parameter that is
as close as possible to the expected move defining AU results in far higher learnabil-
ity than does clamping to the null move. Such a WLU is roughly akin to a mean-field
approximation to AU.17 For example, in Fig. 1, if the probabilities of player 2 making
each of its possible moves was 1/3, then one would expect that a clamping parameter

16 At first it might appear that if one equate total surplus to world utility, them the Groves
mechanism is equivalent to WLU. In fact, the Groves mechanism assures that the total
reward to the player, including the player’s internal surplus and the payment (i.e., transfer)
to the player is equal to the the total surplus, i.e., world utility. In other words, the Groves
mechanism implements a team game utility.

17 Formally, our approximation is exact only if the expected value of G equals G evaluated
at the expected joint move (both expectations being conditioned on given moves by all
players other than η). In general though, for relatively smooth G, we would expect such a
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of a would be close to optimal. Accordingly, in practice use of such an alternative
WLU derived as a “mean-field approximation” to AU almost always results in far
better values of G than does the “endogenizing” WLU.

Intuitively, collectives having factored and highly learnable private utilities like
AU and WLU can be viewed as akin to well-run human companies. G is the “bot-
tom line” of the company, the players η are identified with the employees of that
company, and the associated gη given by the employees’ performance-based com-
pensation packages. For example, for a “factored company”, each employee’s com-
pensation package contains incentives designed such that the better the bottom line
of the corporation, the greater the employee’s compensation. As an example, the
CEO of a company wishing to have the private utilities of the employees be factored
with G may give stock options to the employees. The net effect of this action is to
ensure that what is good for the employee is also good for the company. In addi-
tion, if the compensation packages are “highly learnable”, the employees will have
a relatively easy time discerning the relationship between their behavior and their
compensation. In such a case the employees will both have the incentive to help the
company and be able to determine how best to do so. Note that in practice, providing
stock options is usually more effective in small companies than in large ones. This
makes perfect sense in terms of the formalism summarized above, since such options
generally have higher learnability in small companies than they do in large compa-
nies, in which each employee has a hard time seeing how his/her moves affect the
company’s stock price.

3.4 Summary of COIN Results to Date

In earlier work, we tested the WLU for distributed control of network packet rout-
ing [241], achieving substantially better throughput than by using the best possible
shortest-path-based system [241], even though that SPA-based system has informa-
tion denied the agents in the WLU-based collective. In related work we have shown
that use of the WLU automatically avoids the infamous Braess’ paradox, in which
adding new links can actually decrease throughput — a situation that readily ensnares
SPA’s [228, 239].

We have also applied the W LU to the problem of controlling communication
across a constellation of satellites so as minimize the importance-weighted loss
of scientific data flowing across that constellation [237]. We have also shown that
agents using utility functions derived from the COIN framework significantly im-
prove performance in the problem of job scheduling across a heterogeneous comput-
ing grid [227].

In addition we have explored COIN-based techniques on variants of congestion
games [238, 242, 243], in particular of a more challenging variant of Arthur’s El
Farol bar attendance problem [5] (also known as the “minority game” [48]). In this
work we showed that use of the WLU can result in performance orders of magnitude

mean-field approximation to AU, to give good results, even if the approximation does not
hold exactly.
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superior to that of team game utilities. We have also successfully applied COIN tech-
niques to the problem of coordinating a set of autonomous rovers so as to maximize
the importance-weighted value of a set of locations they visit [226].

Finally we have also explored applying COIN techniques to problems that are
explicitly cast as search. These include setting the states of the spins in a spin glass to
minimize energy; the conventional bin-packing problem of computer science, and a
model of human agents connected in a small-world network who have to synchronize
their purchase decisions [240].

4 Applications/Problems Driving Collectives

The previous sections focused on fields that provide solutions to problems arising
in the field of collectives. To complement them, in this section we present three
problems that are particularly suited to being approached from the field of collectives,
and that provide fertile ground for testing novel theories of collectives.

4.1 El Farol Bar Problem (Minority Game)

The “El Farol” bar problem (also known as the minority game) and its variants pro-
vide a clean and simple testbed for investigating certain kinds of interactions among
agents [5, 44, 47, 206]. In the original version of the problem, which arose in eco-
nomics, at each time step (each “night”), each agent needs to decide whether to attend
a particular bar. The goal of the agent in making this decision depends on the total
attendance at the bar on that night. If the total attendance is below a preset capac-
ity then the agent should have attended. Conversely, if the bar is overcrowded on
the given night, then the agent should not attend. (Because of this structure, the bar
problem with capacity set to 50% of the total number of agents is also known as the
‘minority game’; each agent selects one of two groups at each time step, and those
that are in the minority have made the right choice). The agents make their choices
by predicting ahead of time whether the attendance on the current night will exceed
the capacity and then taking the appropriate course of action.

What makes this problem particularly interesting is that it is impossible for each
agent to be perfectly “rational”, in the sense of correctly predicting the attendance
on any given night. This is because if most agents predict that the attendance will be
low (and therefore decide to attend), the attendance will actually high, while if they
predict the attendance will be high (and therefore decide not to attend) the attendance
will be low. (In the language of game theory, this essentially amounts to the property
that there are no pure strategy Nash equilibria [49, 246].) Alternatively, viewing
the overall system as a collective, it has a Prisoner’s Dilemma-like nature, in that
“rational” behavior by all the individual agents thwarts the global goal of maximizing
total enjoyment (defined as the sum of all agents’ enjoyment and maximized when
the bar is exactly at capacity).

This frustration effect is a crisp example of the difficulty that can arise when
agents try to model agents that are in their turn modeling the first agents. It is similar
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to what occurs in spin glasses in physics, and makes the bar problem closely related
to the physics of emergent behavior in distributed systems [46, 47, 48, 248]. Re-
searchers have also studied the dynamics of the bar problem to investigate economic
properties like competition, cooperation and collective behavior and especially their
relationship to market efficiency [58, 122, 197].

4.2 Data Routing in a Network

Packet routing in a data network [28, 110, 212, 231, 127, 94] presents a particularly
interesting domain for the investigation of collectives. In particular, with such rout-
ing:
(i) the problem is inherently distributed;
(ii) for all but the most trivial networks it is impossible to employ global control ;
(iii) the routers have only access to local information (routing tables);
(iv) it constitutes a relatively clean and easily modified experimental testbed; and
(v) there are potentially major bottlenecks induced by ‘greedy’ behavior on the part
of the individual routers, which behavior constitutes a readily investigated instance
of the Tragedy Of the Commons (TOC).

Many of the approaches to packet routing incorporate a variant on RL [39, 43,
51, 147, 152]. Q–routing is perhaps the best known such approach and is based on
routers using reinforcement learning to select the best path [39]. Although generally
successful, Q–routing is not a general scheme for inverting a global task. This is
even true if one restricts attention to the problem of routing in data networks — there
exists a global task in such problems, but that task is directly used to construct the
algorithm.

A particular version of the general packet routing problem that is acquiring in-
creased attention is the Quality of Service (QoS) problem, where different commu-
nication packets (voice, video, data) share the same bandwidth resource but have
widely varying importances both to the user and (via revenue) to the bandwidth
provider. Determining which packet has precedence over which other packets in such
cases is not only based on priority in arrival time but more generally on the potential
effects on the income of the bandwidth provider. In this context, RL algorithms have
been used to determine routing policy, control call admission and maximize revenue
by allocating the available bandwidth efficiently [43, 152].

Many researchers have exploited the noncooperative game theoretic understand-
ing of the TOC in order to explain the bottleneck character of empirical data net-
works’ behavior and suggest potential alternatives to current routing schemes [25,
67, 132, 133, 139, 141, 179, 180, 208]. Closely related is work on various “pricing”-
based resource allocation strategies in congestable data networks [149]. This work
is at least partially based upon current understanding of pricing in toll lanes, and
traffic flow in general (see below). All of these approaches are particularly of interest
when combined with the RL-based schemes mentioned just above. Due to these fac-
tors, much of the current research on a general framework for collectives is directed
toward the packet-routing domain (see next section).
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4.3 Traffic Theory

Traffic congestion typifies the Tragedy of the Commons public good problem: ev-
eryone wants to use the same resource, and all parties greedily trying to maximize
their use of that resource not only worsens global behavior, but also worsens their
own private utility (e.g., if everyone disobeys traffic lights, everyone gets stuck in
traffic jams). Indeed, in the well-known Braess’ paradox [20, 54, 55, 134], keeping
everything else constant — including the number and destinations of the drivers —
but opening a new traffic path can increase everyone’s time to get to their destination.
(Viewing the overall system as an instance of the Prisoner’s dilemma, this paradox
in essence arises through the creation of a novel ‘defect-defect’ option for the overall
system.) Greedy behavior on the part of individuals also results in very rich global
dynamic patterns, such as stop and go waves and clusters [102, 103].

Much of traffic theory employs and investigates tools that have previously been
applied in statistical physics [102, 129, 130, 183, 187] (see subsection above). In par-
ticular, the spontaneous formation of traffic jams provides a rich testbed for studying
the emergence of complex activity from seemingly chaotic states [102, 104]. Fur-
thermore, the dynamics of traffic flow is particular amenable to the application and
testing of many novel numerical methods in a controlled environment [16, 29, 202].
Many experimental studies have confirmed the usefulness of applying insights
gleaned from such work to real world traffic scenarios [102, 170, 169].

5 Challenge Ahead

A collective is any multi-agent system in which each agent adaptively tries to maxi-
mize its own private utility function, while at the same time there is an overall world
utility which rates the behavior of the entire system. Collectives are quite common in
the natural world, canonical examples being human organizations (e.g., a company),
an ecosystem or organelles in a living cell. In addition to those, as computing be-
comes ubiquitous, artificial systems that constitute collectives are rapidly increasing.
Such systems include data networks, arrays of communication satellites, teams of
rovers, amorphous computers, and the national airspace.

The fundamental problem in analyzing/designing such systems is in determining
how the combined actions of a large number of agents leads to “coordinated” behav-
ior on the global scale. Unfortunately, though they provide valuable insight on some
aspects of collectives, none of the fields discussed in this survey can be modified to
meet all the requirements of a “field” of collectives. This is not too surprising, since
none of those fields were explicitly formed to design/analyze collectives, but rather
touched on certain aspects of collectives. What is needed is a fundamentally new ap-
proach, one that though may borrow from the various fields, will not simply extend
an existing field.

To that end, this survey provides a common language for studying collectives
and highlights the benefits and shortcomings of the many fields that are related to
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collectives. Furthermore, it outlines some of the work ahead if a science of collec-
tives is to emerge. The types of answers that future work on collectives can and will
uncover are difficult to predict. It is a vast and rich area of research, a new field at
the intersection of new needs and new capabilities. But though this survey does not
provide those answers, it is our hope that it provides some of the essential questions
that need to be addressed if the fledging field of collectives is to mature into a new
science.
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